Machine learning technologies for order flowtime estimation in manufacturing systems
نویسندگان
چکیده
منابع مشابه
channel estimation for mimo-ofdm systems
تخمین دقیق مشخصات کانال در سیستم های مخابراتی یک امر مهم محسوب می گردد. این امر به ویژه در کانال های بیسیم با خاصیت فرکانس گزینی و زمان گزینی شدید، چالش بزرگی است. مقالات متعدد پر از روش های مبتکرانه ای برای طراحی و آنالیز الگوریتم های تخمین کانال است که بیشتر آنها از روش های خاصی استفاده می کنند که یا دارای عملکرد خوب با پیچیدگی محاسباتی بالا هستند و یا با عملکرد نه چندان خوب پیچیدگی پایینی...
Manufacturing Systems Scheduling through Machine Learning
The problem of manufacturing systems scheduling by means of dispatching rules is that these rules depend on the state in which the system is in every moment. Therefore it would be interesting to use in every state of the system, the most adequate dispatching rule to that state. To achieve this goal, it is presented in this paper a scheduling approach which uses machine learning. This approach, ...
متن کاملScope for Machine Learning in Digital Manufacturing
This provocation paper provides an overview of the underlying optimisation problem in the emerging field of Digital Manufacturing. Initially, this paper discusses how the notion of “Digital Manufacturing” is transforming from a term describing a suite of software tools for the integration of production and design functions towards a more general concept incorporating computerised manufacturing ...
متن کاملMachine Learning in Hybrid Hierarchical and Partial-Order Planners for Manufacturing Domains
The application of AI planning techniques to manufacturing systems is being widely deployed for all the tasks involved in the process, from product design to production planning and control. One of these problems is the automatic generation of control sequences for the entire manufacturing system in such a way that final plans can be directly used as the sequential control programs which drive ...
متن کاملMachine learning for healthcare technologies – an introduction
Much has been written concerning the manner in which healthcare is changing, with a particular emphasis on how very large quantities of data are now being routinely collected during the routine care of patients. The use of machine learning methods to turn these ever-growing quantities of data into interventions that can improve patient outcomes seems as if it should be an obvious path to take. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Procedia CIRP
سال: 2019
ISSN: 2212-8271
DOI: 10.1016/j.procir.2019.03.179